Virtual Model Control: An Intuitive Approach for Bipedal Locomotion
نویسندگان
چکیده
Virtual model control is a motion control framework that uses virtual components to create virtual forces generated when the virtual components interact with a robot system. An algorithm derived based on the virtual model control framework is applied to a physical planar bipedal robot. It uses a simple set of virtual components that allows the robot to walk successfully over level terrain. This paper also describes how the algorithm can be augmented for rough terrain walking based on geometric consideration. The resulting algorithm is very simple and does not require the biped to have an extensive sensory system. The robot does not know the slope gradients and transition locations in advance. The ground is detected using foot contact switches. Using the algorithm, we have successfully compelled a simulated seven-link planar biped to walk blindly up and down slopes and over rolling terrain. KEY WORDS—biped, legged locomotion, virtual model control, impedance control
منابع مشابه
Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion
Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variabl...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملDOCTORAL THESIS PROPOSAL Biped Locomotion: Augmenting an Intuitive Control Algorithm with Learning
Foot placement is a key determinant for the stabilization of walking speed and lateral motion of a biped. However, there is no closed form expression for the foot placement parameters in term of the walking speed or other gait parameters. A simple and intuitive control algorithm (called “Turkey Walking”) based on Virtual Model Control (VMC) was successfully applied to planar bipedal walking. Ho...
متن کاملStable locomotion control of bipedal walking robots: synchronization with neural oscillators and switching control
Two novel approaches to stable legged locomotion control (neural-oscillator based control and switching control) are studied for achieving bipedal locomotion stability. Postural stability is realized by structural dynamics shaping, and gait stability is achieved by synchronization with neural oscillators and switching control. A biologically inspired control with neural oscillators (central pat...
متن کاملGait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 20 شماره
صفحات -
تاریخ انتشار 2001